If ${Z_1} \ne 0$ and $Z_2$ be two complex numbers such that $\frac{{{Z_2}}}{{{Z_1}}}$ is a purely imaginary number, then $\left| {\frac{{2{Z_1} + 3{Z_2}}}{{2{Z_1} - 3{Z_2}}}} \right|$ is equal to
$2$
$5$
$3$
$1$
If complex numbers $z_1$, $z_2$ are such that $\left| {{z_1}} \right| = \sqrt 2 ,\left| {{z_2}} \right| = \sqrt 3$ and $\left| {{z_1} + {z_2}} \right| = \sqrt {5 - 2\sqrt 3 }$, then the value of $|Arg z_1 -Arg z_2|$ is
Let $z$ be a complex number, then the equation ${z^4} + z + 2 = 0$ cannot have a root, such that
If $z = 1 - \cos \alpha + i\sin \alpha $, then $amp \ z$=
$|{z_1} + {z_2}|\, = \,|{z_1}| + |{z_2}|$ is possible if
If $\frac{{z - i}}{{z + i}}(z \ne - i)$ is a purely imaginary number, then $z.\bar z$ is equal to